
Go Fuzz Yourself:

Summary
This white paper demystifies API
fuzzing, why it should be incorporated
into every API penetration test, and
what free, open source fuzzers are
available and how to use them.

Author Information
Alissa Valentina Knight
Partner
Knight Ink
1980 Festival Plaza Drive
Suite 300
Las Vegas, NV 89135
ak@knightinkmedia.com

Publication Information
This white paper is sponsored
by Detectify.

Initial Date of Publication:
August 2021
Revision: 1.0

How to Find More Vulnerabilities in APIs Through
Fuzzing

TABLE OF CONTENTS

06 07 08
§ Key Takeaways § Problem Statement

§ When penetration testing
doesn’t include fuzzing

§ Introduction
§ Audience

2 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

3HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

TABLE OF CONTENTS

09 11
§ API Fuzzers
§ Methods of Generating Input
§ Content Discovery

§ The OpenAPI Specification
§ HTTP Methods, Headers, and Values

14
§ Fuzzing with Kiterunner
§ Overview
§ Replaying Requests
§ Send to Burp Suite

TABLE OF CONTENTS

23
§ Wrestling with RESTler

26
§ Conclusion

28
§ Sources
§ About The Author
§ About Knight Ink
§ About Detectify

4 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

5HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

KEY TAKEAWAYS

• Omitting fuzzing from your penetration testing
of APIs leaves vulnerabilities undetected that
other tactics and techniques won’t find.

• Fuzz testing of APIs is setting the value of API
operation parameters to a value that the
developer didn’t expect to receive.

• Because APIs process untrusted inputs, fuzzing
is fundamental to the penetration testing
process, often finding vulnerabilities missed by
static program analysis and manual code
inspection.

• Content discovery is the identification of
unlinked files and folders in a web application.
Specifically, when targeting APIs, it is an
effective tool when attempting to discover
undocumented API endpoints.

• API documentation is different from API
specifications, such as OpenAPI (formerly
Swagger). API documentation provides a
reference manual for both developers and non-
developers in how the API behaves and what
the expected inputs and responses are in plain
English.

• API specification files such as OpenAPI is a
format for describing an API, defining all its
available endpoints (such as /R4/patients) and
operations (such as PUT), supported
authentication methods, contact information,
and more. Currently at version 3, OpenAPI files
are clear text and written in specific languages,
such as YAML or JSON.

• HTTP verbs (methods) specifies a specific action
for the API endpoint to perform, such as GET,
POST (the most commonly used verbs), and for
REST APIs, PUT, PATCH, and DELETE. Each verb
corresponds to a particular action and expected
response code, such as 200 (OK). Meaning, the
action was performed successfully. 401
(Unauthorized) or 404 (Not Found), means the
file or resource doesn’t exist. Other response
codes exist, but these are the most common.

• Content discovery in APIs, specifically to the
end of discovering API endpoints requires
patience. It wasn’t until about two hours into
the scanning effort and attempting different
base URLs before I was able to get something

other than a HTTP 403 or 404 error code
response from the EHR systems I was targeting
in my vulnerability research campaign. When I
finally did, it was a HTTP 200 and HTTP 415
response to a POST to an endpoint that I sent
to Burp and continued to manipulate within
Burp Repeater.

6 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

INTRODUCTION

Application programming interfaces (APIs) is
essentially a way to describe the protocols and
tools used for two systems to talk to each other —
akin to a Rosetta Stone between applications that
allows them to talk that couldn’t previously
understand each other without APIs.

A false sense of security is created when a Chief
Information Security Officer (CISO) thinks her APIs
are secure simply because regular penetration
testing is performed. This false sense of security
can lead to an expensive data breach and loss to
customer and shareholder confidence.

An organization can think they’re secure because
penetration testing and vulnerability assessments
are being performed of their APIs, which can
include static and dynamic code analysis and
testing against the OWASP API Security Top 10.
But when the penetration tester doesn’t include
fuzzing in her testing, this can leave a number of
critical vulnerabilities undiscovered.

This white paper provides a deep-dive into what
API fuzzing is, what free, open source fuzzing tools
exist, how to use them, and more importantly,
how to interpret their results.

Consequently, this paper aims to inform CISOs and
other cybersecurity leaders on the criticality of
ensuring that penetration testers performing
testing of the APIs understand the profound
importance of incorporating fuzzing into their
tactics and techniques to ensure more thorough
and accurate results.

Audience
This paper was written for red team members who
want to learn how to properly perform
comprehensive penetration testing of their APIs by
incorporating fuzzing into their tactics and
techniques used in testing.

Additionally, CISOs and other cybersecurity leaders
can use this white paper to be better informed on
what their expectations should be of those
performing penetration tests of the APIs they are
responsible for securing and that the results of
fuzzing are a fundamental part of the final report
delivered to them from the penetration tester(s)
performing the work.

7HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

PROBLEM STATEMENT

Penetration testing of APIs performed today is
profoundly inadequate if fuzzing isn’t performed
as one of the tactics employed against the
endpoint. Many penetration testers don’t include
fuzzing in their repertoire of tactics and techniques
either because:

1. They haven’t been exposed to fuzzing;
2. Don’t know how to use fuzzing tools; or
3. Don’t know how to properly interpret the

results.

This creates a false sense of security with the
organization thinking all possible vulnerabilities
were found for remediation, leaving potentially
vulnerable APIs exposed to the internet.

When Penetration Testing
Doesn’t Include Fuzzing
Vulnerability Scanners
Approaching penetration testing of web
applications can be done using manual testing of
vulnerabilities in the OWASP Security Top 10, such
as SQL injection, cross-site scripting (XSS), and
more; and automated scanning using tools, but
these same scanners can’t be used to find
vulnerabilities in APIs due to the nature of how
different APIs work from traditional web apps.

There are two types of approaches to identifying
vulnerabilities in applications, static application
security tools (SAST) and dynamic application
security tools (DAST). These scanners approach
vulnerability identification differently.

SAST performs what’s also referred to as “static
code analysis” where the source code is checked
line-by-line for vulnerabilities, often responsible
for a lot of false positives.

SAST lacks context in security, meaning it doesn’t
understand how an API fulfills its contract or uses
the data coming into it and is blind to third-party
libraries and frameworks where source code is
typically not available. DAST was designed to send
Web 1.0 style page parameter requests during the
running state of an application. DAST can not
invoke the API as it’s unaware of how to form the
requests expected by the API endpoints. (Williams,
J., 2015)

API Fuzzers
There are different taxonomies of fuzzers that
leverage different techniques towards the same
goal. While different people opine on what these
categories of fuzzers are, it’s generally accepted
that Microsoft’s taxonomy makes the most sense.
These include:

• Knowledge of Input;
• Knowledge of target application structure; and
• Method of generating new input.

Knowledge of Input
This category of fuzzers are also referred to as
“smart fuzzers” as they have a knowledge of the
application’s expected input and format. For
example, the encoding expected such as Base64 or
file-type, such as PE headers.

Knowledge of Target Application Structure
Before I decompose the different taxonomies of
fuzzers, it’s important to note that in the broader
hemisphere of testing is black box and white box
testing. In lay terms, white box testing is simply
where the tester or the tool has the requisite
information needed of the target that obviates the
need to figure it out (a la guessing) while black box
testing is the antithesis of that, ultimately
requiring the tester or the tool to figure it out on
their own by hunting for the answers to those
questions.

In the application of fuzzers, the smartest fuzzers
will have full (white box) or partial (gray box)
information on the target API.

8 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

API
FUZZERS

9HACKING APIS THROUGH FUZZING AND CONTENT DISCOVERY

GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

API FUZZERS

Method of Generating New Input
Fuzzers are capable of generating the test input
data from scratch randomly or semi-randomly or
by taking pre-existing properly structured stimulus
by mutating it to generate different permutations
for stimulus to evaluate how the target application
responds.

This paper demonstrates the efficacy of two
different types of fuzzers, Kiterunner and RESTler
and decomposes the idiosyncratic distinctions
between them through the presentation of their
empirical output run against public APIs.

Fuzzing should be used because it’s an effective
way to find security vulnerabilities in applications.

According to Microsoft, thousands of
vulnerabilities have been discovered as a result of
fuzzing. Fuzzing has become so critical to the
software development life cycle (SDLC) that
Microsoft requires it as part of its Microsoft
Security Development Lifecycle for every
untrusted interface.

Content Discovery
Content discovery is the automated identification
of hidden/unlinked resources that aren’t visible or
able to be spidered in a target web application.
While content discovery tools date back several
decades, this class of tools have continued to
evolve from Web 1.0 to modern applications, such
as APIs to become more context-aware.

Content discovery is performed differently across
different tools, such as Burp suite, which uses
name guessing, web crawling, and extrapolation
from naming conventions. Traditional content
discovery tools simply look through a wordfile to
find files or folders that might exist on the target
web server. Newer content discovery tools have
evolved to enable targeting of modern web
applications such as APIs. Many content discovery
tools are now specifically made for RESTful APIs
using openAPI (formerly Swagger) files in order to

search for files and folders of interest typically
placed there with the different API frameworks.

Routes and Endpoints
In traditional web applications, filenames and
folders are mapped to actual files and folders that
exist on the web server, e.g.
https://www.server.com/index.php, which actually
maps to a file on the web server called index.php.
However, in modern web applications, such as
APIs, you’ll have a server
https://www.server.com/api/r4 which specifies a
route. On the server is a routes file that points to a
snippit of code instead of an actual file. In the
latter example URI, /r4 is the API endpoint.

10 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

THE OPENAPI
SPECIFICATION

11HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

Figure 1. Sample OpenAPI File

Source: Knight Ink

The OpenAPI Specification
Originally called Swagger specification, OpenAPI
specification is a format for describing an API,
defining all of its available endpoints (such as
/R4/patients) and operations (such as PUT),
supported authentication methods, contact
information, and more. Currently at version 3,
OpenAPI files are clear text and written in specific
languages, such as YAML or JSON.

An OpenAPI spec can produce documentation for
an API so that anyone, even non-developers can
understand what the API is for, how to access it,
what the expected inputs and outputs are, and
more in plain english.

In summary, the OpenAPI interface-description
language for REST APIs has largely become the
most popular specification for describing how to
access a cloud service through its REST API that
details what requests it can handle, what
responses may be received, and the response
format (Atlidakas, V, Godefrroid, P, Polishchuk, M,

2019).

The OpenAPI specification should come first and
can generate the documentation for the API, but it
can go further than that, including generating a
mock server, the stubs of the API for publishing,
the SDK for the different stacks for creating the
API consumers from a single source of truth.

12 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

HTTP Methods, Headers, and Values
HTTP headers are options that can be passed along
from an HTTP client to an HTTP server (web server)
or visa-versa from an HTTP server to a client.

These values can contain a number of different
options. The different header types include
request headers, response headers,
representation headers, and payload headers.
Header options can include values, such as
Authorization, which contains authentication
credentials; or a cookie header, which can contain
a stored HTTP cookie that the server uses to
identify an already authenticated user/session. See
Figure 2 below for a sample.

HTTP verbs (methods) specify a specific action for
the API endpoint to perform, such as GET, POST
(the most commonly used verbs), and for REST
APIs, PUT, PATCH, and DELETE. Each verb
corresponds to a particular action and expected
response code, such as 200 (OK), meaning the
action was performed successfully; 401
(Unauthorized), or 404 (Not Found), meaning the
file or resources doesn’t exist. Other response
codes exist, but these are the most common.

HTTP parameters are the variable part of a
resource that determine the type of action you
want to take. These are passed as options to the
endpoint in order to elicit a specific response, such
as header parameters, query parameters, and so-
on.

13HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

Figure 2. Sample OpenAPI File

Source: Knight Ink

Fuzzing
WITH KITERUNNER

14 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

Overview
In this section, I present a real-life use case of
Kiterunner employed against public APIs. The
empirical data presented in this paper underscores
the importance of running content discovery tools
against APIs in order to find unlinked files and
folders accessible via the API. Additionally, this
paper provides prescriptive step-by-step use cases
of how to use Kiterunner against API endpoints
and the results that specific stimulus generated by
Kiterunner provides.

Kiterunner is a tool for performing forced
browsing, checking for accessibility to unlinked
files or folders that aren’t directly referenced in
the web application but available to adversaries.
Kiterunner doesn’t simply guess for random
permutations of different files and folders. Its
creator, Shubham Shah, codified over 67,000
different openAPI files he gathered across the
internet that Kiterunner uses for its checks that
can be typically found in APIs generated by off-
the-shelf frameworks like Flask, Rails, and Express.

Kiterunner’s braintrust is built around how APIs
are built by using these openAPI files instead of
just random brute forcing.

Content discovery is the use of an automated tool
targeted at web servers that typically uses a flat
textfile of folders and filenames that it cycles
through in order to find files and folders in the
“web root” of the server.

Installing Kiterunner (Mac)

CONTENT DISCOVERY WITH KITERUNNER

$ brew install go
$ sudo apt install golang-go

15HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

Linux

Running with Kites
1. Download large and small wordlists (.kite files)

from the Kiterunner Github page
The JSON datasets can be found below:
• routes-large.json (118MB compressed,

2.6GB decompressed)
• routes-small.json (14MB compressed,

228MB decompressed)

Alternatively, it is possible to download the
compile .kite files from the links below:
• routes-large.kite (40MB compressed, 183M

decompressed)
• routes-small.kite (2MB compressed, 35MB

decompressed)

2.

Tokens: Modifying Your Header
Hopefully, the API you’re targeting has
implemented bearer tokens and is using tokens for
authentication and scopes for authorization. If the
API has implemented a Bearer token, it could be a
random string of characters or a JSON Web Token
(JWT), which encodes the access token into an

access token and ships in the form of a JSON
object.

If the API has implemented tokens, you’ll need to
authenticate with the API using the Chromium
browser within Burp Suite for example, then copy
and paste the token you receive into your
command line for Kiterunner in order to send
authenticated requests to the API. Otherwise, not
doing so will result in a bunch of HTTP 403
(FORBIDDEN) error messages rendering your
Kiterunner scan useless.

In order to pass fields to the header of your
requests within Kiterunner, pass the -H flag to
Kiterunner and specify your header fields, in our
case, the Bearer token between quotes. (Figure 3).

build the binary
make build

symlink your binary
ln -s $(pwd)/dist/kr /usr/local/bin/kr

compile the wordlist
kr kb compile <input.json> <output.kite>
kr kb compile routes.json routes.kite

scan away
kr scan hosts.txt -w routes.kite -x 20 -j 100 --ignore-length=1053

kr scan https://<ip>/ -w routes-large.kite

16 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

https://wordlists-cdn.assetnote.io/data/kiterunner/routes-large.kite.tar.gz
https://wordlists-cdn.assetnote.io/data/kiterunner/routes-small.kite.tar.gz

Figure 3: Virtual application path based routing illustration

Source: Knight Ink

Kiterunner in the Weeds
Depth Scanning
A particularly powerful feature of Kiterunner is its
ability to define how many levels deep within the
folder structure a scan should be performed of a
path, especially useful in path-based routing
(Figure 4).

Path-based routing is simply being able to route
traffic to backend servers based on paths defined
in the API request. For example,
server.com/images could be routed to a backend
images server farm or server.com/patients could
be routed to servers designed specifically for
holding patient EHRs.

By default, when depth isn’t specified, Kiterunner
will scan a target at 1 level deep, meaning if you
specified a target of server.com, Kiterunner would
scan server.com/api.

At level 2, it would scan server.com/api/R4 and at
level 3, it would scan server.com/api/R4/patient.

17HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

Figure 4: Virtual application path-based routing illustration

Source: Knight Ink

Assetnote Wordlists
Wordlists are flat files of common paths found in
web applications and are used by many of the
popular content discovery tools, such as Dirbuster.

However, Assetnote culls together and updates
their wordlists from Swagger files collected from
across the internet on the 28th of each month
giving you the richest dataset of wordlists
specifically designed for APIs than any other tool.

When wordlists are compiled from .txt files into
.kite files, they are cached in
~/.cache/kiterunner/wordlists. An example of one
of the wordlists from the most recent list of
generated wordlists on Activelist.io can be found
in Figure 5 below.

The wordlists from Activelist.io are quite large. If
you don’t want to use the entire wordlist, you
have an option you can pass Kiterunner when
starting the tool that will tell it to only use the first
X number of lines that you specify and then
gracefully stop.

For example, as shown in the documentation, if
you want to only use the first 20,000 lines of the
API routes wordlist:

this will use the first 20000 lines in the api routes
wordlist

However, unless you know for sure you don’t want
to use the latter portion of a wordlist, this can
cause you to miss findings so use with caution
knowing you may miss something.

$ kr scan <target> -A=apiroutes-
210228:20000 -x 10 --ignore-length=34

18 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

Figure 5: Recent entries from Kiterunner’s generated wordlists

Source: Knight Ink

19HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

Replaying Requests
Kiterunner’s output doesn’t provide much utility
beyond seeing the HTTP response code for the
HTTP requests sent by Kiterunner. You’ll need to
dig further into the actual request to better
understand what was sent and what was received
back from the API.

This requires use of the replay option in
Kiterunner. Replay will replay a specific API
request sent from the previous or currently
running session.

Send to Burp Suite
Kiterunner has the ability to send all of its requests
that you replay through a proxy server for further
manipulation instead of using Kiterunner’s replay
option at the command line.

By sending everything through Burp’s Proxy, you
have the ability to interdict every API request and
analyze the stimulus and response in intercept and
forward it on or replay it with different
permutations of the original request (Figure 6).

Figure 6: Using Kiterunner replay to dig further into an HTTP response from the FHIR API server

Source: Knight Ink

$ kr kb replay -w <wordlist> “GET 400 [311,
18, 7] https://acme.com/interconnect-fhir-
oauth/api/FHIR/R4/v1/book
0cf6832e5e4c0aa6b0f5e513fd0c85708446cda0
”

20 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

To do this, you’ll need to enable the proxy within
Burp, disable intercept, then add the --proxy
option to Kiterunner when running it.

This will force Kiterunner to send all of its requests
and the responses will then be captured within
Burp.

Steps to send Kiterunner through Burp’s proxy:

1. Find IP/PORT Burp is listening on
2. Turn off intercept
3. Append --proxy=http://127.0.0.1:8080 to

Kiterunner
4. View request in Burp’s HTTP history window

Figure 7: Analyzing Kiterunner replays within Burp Suite

Source: Knight Ink

21HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

Figure 8. Sending a HTTP 415 response code to Repeater in Burp for further tampering

Source: Knight Ink

22 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

WRESTLING
WITH RESTler

23HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

WRESTLING WITH
RESTler
RESTler, developed at Microsoft, is the world’s first
stateful API fuzzer that automatically generates
tests and automatic execution by first reading the
OpenAPI specification in order to automatically
find vulnerabilities in the API.

A high-level picture for the first-time usage of
RESTler can be found in Figure 9 below.

Building RESTler
The following section is adapted from the build
instructions available on the Github repository for
RESTler.

1. The prerequisites for installing RESTler are
Python 3.8.2 and .Net 5.0. Currently, RESTler
supports Windows and Linux on 64-bit
machines but has experimental support for
macOS.

2. First, create the directory where you’ll be
building RESTler

3. Switch to the repo root directory and run the
following Python script:

NOTE: If you receive a nuget error NU1403 when
building, a quick workaround is to clear your cache
with this command: $ dotnet nuget locals all--clear

Figure 9. RESTler high-level flow for first-time usage

Source: Microsoft

$ python ./build-restler.py --dest_dir
<full_path_to_directory_you_created_in_st
ep_2>

24 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

The below results are typical for an API that does
not require authentication and has a few GET
endpoints without any input parameters.

• 29 requests (endpoint + method) were found in
the Swagger spec.

• 3 requests were attempted by RESTler. The
other 26 were not attempted because RESTler
determined that they depend on outputs of
one of the requests that were executed, and a
failure prevented that output resource from
being available to the other requests.

• 2 requests were successful.
• The coverage is 7% (2/29)
• There were no bugs found. Sometimes, bugs

are found in the quick start phase.

In Fuzz-lean mode, RESTler executes once every
endpoint+method in a compiled RESTler grammar
with a default set of checkers to see if bugs can be
found quickly.

In Fuzz mode, RESTler will fuzz the service under
test during a longer period of time with the goal of
finding more bugs and issues (resource leaks, perf
degradation, backend corruptions, etc.). Warning:
The Fuzz mode is the more aggressive and may
create outages in the service under test if the
service is poorly implemented.

An optional settings file can also be passed to
RESTler by adding the command-line option --
settings <path_to_settings_file.json>. For a list of
available settings, see SettingsFile.

Outputs: see the sub-directory FuzzLean or Fuzz
(similar to Test)

RESTLer will generate a sub-directory
Fuzz[Lean]\RestlerResults\experiment<GUID>\logs
including the following files:

• bug_buckets.txt reports bugs found by RESTler.
Those bugs are either "500 Internal Server
Errors" found by the RESTler "main_driver" or
property checker violations

RESTler currently detects these different types of
bugs:

• "500 Internal Server Errors" and any other 5xx
errors are detected by the "main_driver"

• UseAfterFreeChecker detects that a deleted
resource can still being accessed after deletion

• NameSpaceRuleChecker detects that an
unauthorized user can access service resources

• ResourceHierarchyChecker detects that a child
resource can be accessed from a non-parent
resource

• LeakageRuleChecker detects that a failed
resource creation leaks data in subsequent
requests

• InvalidDynamicObjectChecker detects 500
errors or unexpected success status codes
when invalid dynamic objects are sent in
requests

• PayloadBodyChecker detects 500 errors when
fuzzing the JSON bodies of requests

RESTler will also generate a sub-directory
Fuzz\ResponseBuckets including the following
files:

• runSummary.json is a report on all the HTTP
error response codes that were received

• errorBuckets.json includes a sample of up to 10
pairs of <request, response> for each HTTP
error codes in the 4xx or 5xx ranges that were
received

$ restler.exe fuzz-lean --grammar_file
<RESTLer grammar.py file> --dictionary_file
<RESTler fuzzing-dictionary.json file> --
token_refresh_interval <time in seconds> --
token_refresh_command <command>

$ restler.exe fuzz --grammar_file <RESTLer
grammar.py file> --dictionary_file <RESTler
fuzzing-dictionary.json file> --
token_refresh_interval <time in seconds> --
token_refresh_command <command> --
time_budget <max number of hours
(default 1)

25HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

CONCLUSION

26 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

Conclusion
I have performed dozens of penetration tests of
APIs in my career, from hacking healthcare APIs to
hacking federal and state law enforcement
vehicles through the manufacturer’s APIs giving
me remote control of the vehicles.

In every penetration test I’ve performed, fuzzing
has always been the most profoundly important
step of the tactics and techniques I use in my kill
chain to find vulnerabilities that only fuzzing can
find.

Manipulation of parameters, especially when
dealing with hundreds in large scale deployments
of API endpoints can and should only be done with
an automated fuzzing tool.

If you have the distinct feeling that you may have
missed vulnerabilities in your API penetration test,
it’s most likely because you didn’t perform any
fuzzing of the target endpoints.

In this paper, I demystified API fuzzing, explained
the different type of API fuzzers among the more
popular options and explained their usage and
how to interpret their results.

I used Kiterunner, my go-to open source fuzzer for
performing an API penetration test against real-
world APIs and explained how to point it at Burp
Suite for further replay attacks, extending
Kiterunner’s capabilities with those offered by
Burp Suite.

It’s my belief that a penetration test of an API that
doesn’t incorporate fuzzing in the tactics and
techniques used by the penetration tester is
consequently incomplete until fuzzing has been
performed.

27HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

SOURCES
Assetnote. (n.d.). assetnote/kiterunner. GitHub. Retrieved June 22, 2021, from
https://github.com/assetnote/kiterunner#depth-scanning

OWASP. (n.d.). Forced Browsing Software Attack | OWASP Foundation. Retrieved June
22, 2021, from https://owasp.org/www-community/attacks/Forced_browsing

Li, V. (2020, January 26). Fuzzing Web Applications - The Startup. Medium.
https://medium.com/swlh/fuzzing-web-applications-e786ca4c4bb6?source=linkShare-
14a8b702dc61-1624248014&_branch_match_id=link-935370843063544148

RapidAPI. (2021, April 20). What is an API Endpoint? | API Endpoint Definition |
RapidAPI. The Last Call - RapidAPI Blog. https://rapidapi.com/blog/api-
glossary/endpoint/

Swagger. (n.d.). About Swagger Specification | Documentation | Swagger. Swagger
Specification. Retrieved June 22, 2021, from
https://swagger.io/docs/specification/about/

OpenAPI. (n.d.). OAI/OpenAPI-Specification. OpenAPI Specification - GitHub. Retrieved
June 22, 2021, from https://github.com/OAI/OpenAPI-
Specification/blob/main/versions/3.0.2.md

Todd Fredrich, Pearson eCollege. (n.d.). HTTP Methods for RESTful Services. Pearson
ECollege. Retrieved June 22, 2021, from
https://www.restapitutorial.com/lessons/httpmethods.html

RapidAPI. (2021b, April 23). What are API Parameters? | Parameters Definition | API
Glossary. The Last Call - RapidAPI Blog. https://rapidapi.com/blog/api-
glossary/parameters/

Paxton-Fear, D. K. P.-F. (2021, April 14). API Recon with Kiterunner - Hacker Toolbox.
YouTube. https://www.youtube.com/watch?v=hNs8fpWfcyU&t=658s

Swagger. (n.d.-b). Understanding the Differences Between API Documentation,
Specifications, and Definitions. Retrieved June 22, 2021, from
https://swagger.io/resources/articles/difference-between-api-documentation-
specification/

Our guide to fuzzing | F-Secure. (n.d.). F-Secure. Retrieved August 12, 2021, from
https://www.f-secure.com/us-en/consulting/our-thinking/15-minute-guide-to-fuzzing

Godefroid, P. (2020, March 4). A brief introduction to fuzzing and why it’s an important
tool for developers. Microsoft Research. https://www.microsoft.com/en-
us/research/blog/a-brief-introduction-to-fuzzing-and-why-its-an-important-tool-for-
developers/

28 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

https://swagger.io/resources/articles/difference-between-api-documentation-specification/
https://www.f-secure.com/us-en/consulting/our-thinking/15-minute-guide-to-fuzzing

Williams, J. (2015, June 25). What Do You Mean My Security Tools Don’t Work on
APIs?!! Dark Reading. https://www.darkreading.com/application-security/what-do-
you-mean-my-security-tools-don-t-work-on-apis-

Licata, S. (2020, June 19). Focus on Fuzzing: Types of Fuzzing. SAFECode.
https://safecode.org/focus-on-fuzzing-types-of-fuzzing/

Web API Fuzz Testing | GitLab. (n.d.). Gitlab. Retrieved August 12, 2021, from
https://docs.gitlab.com/ee/user/application_security/api_fuzzing/

GitHub - microsoft/restler-fuzzer: RESTler is the first stateful REST API fuzzing tool for
automatically testing cloud services through their REST APIs and finding security and
reliability bugs in these services. (n.d.). GitHub. Retrieved August 13, 2021, from
https://github.com/microsoft/restler-fuzzer

https://patricegodefroid.github.io/public_psfiles/icse2019.pdf

29HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

https://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-don-t-work-on-apis-
https://safecode.org/focus-on-fuzzing-types-of-fuzzing/
https://docs.gitlab.com/ee/user/application_security/api_fuzzing/
https://github.com/microsoft/restler-fuzzer
https://patricegodefroid.github.io/public_psfiles/icse2019.pdf

ABOUT THE AUTHOR

Alissa Knight is a partner at Knight Ink and
blends influencer marketing, content
creation in writing and video production,
go-to market strategies, and strategic
planning for telling brand stories at scale
in cybersecurity.

She achieves this through ideation to
execution of content strategy,
storytelling, and execution of influencer
marketing strategies that take
cybersecurity buyers through a brand’s
custom curated journey to attract and
retain them as long-term partners.

Alissa is a published author, having
published the first book on hacking
connected cars and is working on a new
series of books into hacking and securing
APIs and microservices.

30 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

ABOUT KNIGHT INK

Firm Overview
Knight Ink is a content strategy, creation,
and influencer marketing agency founded
for category leaders and challenger
brands in cybersecurity to fill current
gaps in content and community
management. We help vendors create
and distribute their stories to the market
in the form of written and visual
storytelling drawn from 20+ years of
experience working with global brands in
cybersecurity. Knight Ink balances
pragmatism with thought leadership and
community management that amplifies a
brand’s reach, breeds customer delight
and loyalty, and delivers creative
experiences in written and visual content
in cybersecurity.

Amid a sea of monotony, we help
cybersecurity vendors unfurl, ascertain,
and unfetter truly distinct positioning
that drives accretive growth through
amplified reach and customer loyalty
using written and visual experiences.

Knight Ink delivers written and visual
content through a blue ocean strategy
tailored to specific brands. Whether it’s a
firewall, network threat analytics
solutions, endpoint detection and
response, or any other technology, every
brand must swim out of a red sea of
competition clawing at each other for
market share using commoditized
features. We help our clients navigate to
blue ocean where the lowest price or
most features don’t matter.

We work with our customers to create a
content strategy built around their blue
ocean then perform the tactical steps
necessary to execute on that strategy
through the creation of written and visual
content assets unique to the company
and its story for the individual customer
personas created in the strategy setting.

Contact Us
Web: www.knightinkmedia.com
Phone: (702) 637-8297
Address: 1980 Festival Plaza Drive, Suite
300, Las Vegas, NV 89135

31HOW TO FIND MORE VULNERABILITIES IN APIS THROUGH FUZZING

ABOUT DETECTIFY

Firm Overview
Detectify offers cloud-based web
application security solutions that
streamline vulnerability findings in
production to security defenders and
application owners. Detectify
collaborates with ethical hackers to
source the latest security research from
hacker-into-scanner in as fast as 15
minutes. It leverages fuzzing and crawling
techniques and delivers reliable payload-
based testing to customers. This means
verified results and clearer visibility with
less noise. With Detectify you will bring
security up to speed and scale with
development, and go to market safer.

Curious to see what Detectify will find in
your websites? Head over to
www.detectify.com to start a free 2-week
trial!

32 GO FUZZ YOURSELF | BROUGHT TO YOU IN PARTNERSHIP WITH

https://www.detectify.com/?utm_source=ebook&utm_medium=referral&utm_campaign=AKapifuzz

Knight Ink
1980 Festival Plaza Drive
Suite 300
Las Vegas, NV 89135
ak@knightinkmedia.com

