
DANCING WITH THE DEVIL:
AN API HACKER’S SHOWDOWN
WITH TRACEABLE’S API SECURITY
SOLUTION

I have gained unauthorized access to over a million patient records,
taken remote control of law enforcement vehicles, transferred
money in and out of bank accounts that didn’t belong to me, and
hacked cryptocurrency exchanges through their APIs. Now, I face my
greatest challenge yet. Traceable.

SUMMARY
This white paper documents my
targeting and exploitation of an API
protected behind Traceable and
whether it was effective in detecting
and stopping my API attacks in an
attempt to get at the data.

AUTHOR INFORMATION
Alissa Valentina Knight
Partner
Knight Ink
+1 702 766 6362
1980 Festival Plaza Drive
Suite 300
Las Vegas, NV 89135
ak@knightinkmedia.com

PUBLICATION INFORMATION
This white paper is sponsored by
Traceable

Initial Date of Publication:
January 2023
Revision: 1.0

TABLE OF CONTENTS

2 DANCING WITH THE DEVIL

INTRODUCTION

Key Takeaways
Why I Wrote This Paper
APIs in Modern Software Applications
API Security
API Security Challenges
API Security Solutions Come To
Market

03
05
05
06
06
06

TRACEABLE

THE RESEARCH

Enter Traceable
Understanding Distributed Tracing

08
08

OWASP Lists
Target Apps
Test Environment
Tools

10
10
10
11

TEST RESULTS

OWASP API Security Top 10
OWASP (Web) Top 10

14
15

TACTICS & TECHNIQUES

crAPI (OWASP API Security Top 10)
Juice Shop (OWASP Web Top 10)
Evasion Techniques

17
21
24

CONCLUSION

Conclusion
Bibliography
About Knight Ink
About Traceable

29
31
33
34

APPENDICES

APPENDIX A
APPENDIX B
About the Author

36
40
43

KEY TAKEAWAYS

• APIs are the pipes and infrastructure that carry
valuable data of our digital age and they must
be secured to keep the data safe.

• Without proper authentication, authorization,
and encryption APIs can become a huge
security liability.

• The Open Web Application Security Project
(OWASP), a respected security organization,
validated the uniqueness of securing APIs by
creating a top 10 list of API Security threats,
separate from their top 10 list focused on web
threats.

• To be effective, API security solutions must
understand

• Application business logic - what’s a legitimate
versus illegitimate request (context) who is
requesting it (authentication) if they have
permission to request it (authorization) if the
requestor is a human or a bad bot (network
telemetry).

• Traceable and its unique approach to API
security proved very capable of fending off my
attacks for both the threats listed in the
OWASP API top 10 list AND the OWASP (web)
Top 10 list.

3 DANCING WITH THE DEVIL

INTRODUCTION

4AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

INTRODUCTION

WHY I WROTE THIS PAPER

APIs demand a different approach to securing our
applications than traditional web application
techniques, such as WAFs. These new
requirements have resulted in API security
“solutions” appearing rapidly and everywhere,
making claims about their ability to protect your
APIs. While sales and marketing literature can
easily make claims about abilities, we all know that
how a product actually performs in production can
vary greatly from the literature. Thus the impetus
for this research paper.

I have been hacking APIs over the last decade,
targeting APIs in healthcare that led to
unauthorized access to over a million doctor and
patient records via mHealth (mobile health) and
FHIR (Fast Healthcare Interoperability Resources)
APIs; taking remote control of law enforcement
vehicles through the automaker’s APIs; and
transferring money in and out of bank accounts
using financial services and FinTech APIs, including
cryptocurrency exchanges.

Thus, I’m well qualified to test the efficacy of API
security solution claims. So I decided I’d go head-
to-head with an API security solution, and share
my findings. But first, let’s cover some background
and context.

APIs IN MODERN SOFTWARE
APPLICATIONS

Today, monolithic applications running on single
web servers have all but been replaced by
microservices in container orchestrators, such as
AWS Elastic Container Service (ECS), Fargate, and
Kubernetes just to name a few. Brokering access
to these containers from the outside and also
container-to-container traffic are application
programming interfaces (APIs). APIs are the glue
that enables application-to-application traffic. API
consumers (or API clients) can be mobile apps to

even passenger transport vehicles, such as planes,
trains, and automobiles. APIs can be thought of as
a Rosetta Stone between different applications
allowing them to talk.

5 DANCING WITH THE DEVIL

History of APIs The history of web APIs goes back over two
decades to the late 90s along with the release of the first web
API (XML) by SalesForce at the IDG Demo conference on
February 07, 2000.

Despite the history of paper-based APIs dating back to the
1940s-1970s, the first web API was launched at the IDG
Demo conference in 2000 by SalesForce which used
Extensible Markup Language (XML) for messaging patterns in
information sharing. Today, there are different types of APIs in
use, graphQL, gRPC, RESTful (REST) APIs, and Simple
Object Access Protocol (SOAP) APIs, which were originally
developed by Microsoft (which aren’t as commonly found but
are still used).

REST APIs use different formatting for the data exchanged
between the API and the API consumer, including JSON and
XML, while SOAP APIs use XML. REST APIs use a URL to
request information instead of XML used by SOAP, making it
far easier for developers to work with and can return results in
Command Separated Value (CSV), JavaScript Object
Notation (JSON), and Really Simple Syndication (RSS).
Simply put, REST APIs that use JSON are far more
commonly found than SOAP and XML.

API SECURITY

With APIs came an expanding attack surface
beyond the web applications and databases. This
new attack surface demanded a different
approach to security. The need for a new security
control to protect APIs is largely due to the
fundamental differences between how traditional
web applications process data versus how it’s
done with APIs.

In traditional web applications, the website is
displayed (rendered) in the user’s web browser
due to data processing being performed on the
server side (the side of the web server). This
necessitated a WAF to protect unauthorized
access into the web server, backend servers, and
network infrastructure.

With APIs, to provide application functionality, the
user interface (which is the API consumer)
leverages APIs to get the needed data from the
backend. This then leaves the job of rendering and
maintaining the application state to the client.
Thus, APIs have unprecedented reach and access
to our precious data, and to the business logic of
our applications, making them an attractive target
for hackers and a challenging target to protect.

API SECURITY CHALLENGES

APIs serve and alter data. Their sole purpose is to
take requests for specific data, or change of that
data, from API consumers, request that data or
change from the backend data source, then
provide the data or change confirmation to the
requestor. However, things can go bad quickly
when the API requests aren’t properly
authenticated or authorized. In my past API
hacking campaigns, I've found that a lack of proper
API security is more common than not. I’ve found
that most organizations today are still using
traditional approaches to securing their web
applications, and those approaches can’t be used
effectively to secure the APIs which now make up

the majority of those applications.

An effective API security solution must understand
the application business logic and what is a
legitimate, versus illegitimate, API request
(context); who is requesting it (authentication);
whether or not they have permission to request it
(authorization); and whether or not the person
requesting it is indeed a human versus synthetic
traffic generated by bad bots or tools (network
telemetry). All of these requirements demand
greater fidelity and even more innovative ways of
doing attack detection and response. API security
demands that we move beyond only packet
inspection against web application firewall (WAF)
rules.

API SECURITY SOLUTIONS COME TO
MARKET

Realizing that WAFs were ineffective against the
evolving nature of tactics and techniques being
used by sophisticated threats, pureplay API threat
management solutions arrived on the scene in
2015 and began establishing a new cybersecurity
product category. This new breed of application
security solutions focused on API security and used
new approaches for detecting and preventing API
attacks.

These new solutions required capturing and
processing large amounts of network traffic, so
they were designed to sit unobtrusively on the
edge of the network where API traffic was flowing
and to look for sequences of API calls that signaled
malicious behavior. Because this meant sifting
through a large amount of data, looking for
patterns and deviations from those patterns,
applying machine learning algorithms to sift
through the data was a natural fit.

6AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

TRACEABLE

7AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

Most of us in the security industry are highly
skeptical when we hear that “machine learning” or
“AI” is going to solve our security problems (or any
real-world problem for that matter). But one
undisputed fact about AI/ML is that its likelihood
of success is directly proportional to the amount
and quality of data that it has access to.

ENTER TRACEABLE

Disrupting these other previous approaches to API
security, Traceable came out of stealth in 2020
with a newer approach to detecting attacks on
APIs using distributed tracing with ML. This unique
approach to detecting API abuses using distributed
tracing is what piqued my interest in its efficacy in
stopping an API hacker like myself.

Traceable says they use distributed tracing and
many machine learning algorithms to determine if
API requests 1) went through all the required
checks, including authentication and authorization;
2) called any unexpected services or granted
access to unauthorized data; 3) what path the user
took to the API; and 4) who the user/attacker is,
regardless of their attempts to hide.

UNDERSTANDING DISTRIBUTED
TRACING

To to understand why Traceable and their
distributed tracing piqued my interest, it’s
important to understand what distributed tracing
is. While it’s common for it to be used in observing
the performance and uptime of microservices-
oriented architectures, it is novel to use it for
detecting attacks on APIs. So what is it?

I find using analogies is a good way to explain
extremely labyrinthine topics. For anyone who has
used Apple’s FindMy app, or something similar,
you’ll see that, once you add your device for
tracking, it will literally map out everywhere the
device goes. The app will tell you, step-by-step,
where a device, such as your Apple Airpods, have
moved (Figure 1).

This is a great analogy of how distributed tracing
works. Tracing works by tagging every request as it
moves across distributed services in multi-cloud
environments. It uses a unique identifier for every
microservice, container, and infrastructure it
touches. However, instead of tracking packets
from hop to hop, similar to traceroute, distributed
tracing allows the tracking of that unique identifier
all the way from the top of the application stack,
to the application’s data layer, and to the
infrastructure beneath it, providing rich context on
everything that sees it.

Because services-oriented architectures are
disparate by nature, unlike their monolithic
predecessors, it’s extremely difficult to demystify
how transactions traverse the multiple layers of an
API/microservices system -- to follow the path it
takes from the API at the edge, through the
microservices, and to the back-end. Distributed
tracing solves this.

With its distributed tracing backend and ML
algorithms, Traceable claims they can detect the
attacks, and keep out the “evil-doers” targeting
vulnerable APIs. So, are their claims true? Let’s
find out.

8AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

FIGURE 1. Apple’s FindMy App

Source: Apple

TRACEABLE

THE RESEARCH

9AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

THE RESEARCH

OWASP LISTS

The OWASP Top 10 lists are industry-accepted
guidance of what OWASP believes those
protecting web applications and APIs should be
fundamentally concerned about when it comes to
hardening web applications and APIs against
attacks. It’s for this reason that both OWASP Top
10 lists were selected as a rubric for my testing in
this research.

Who is OWASP? The OWASP or Open Web
Application Security Project is a nonprofit
foundation, powered by a global brain trust of
community members, that publishes open-source
software, guides, tools, and methodologies for
securing web applications across hundreds of
chapters worldwide. OWASP is famously known
for publishing the OWASP Web Application Testing
Guide, OWASP Top 10 vulnerabilities in web
applications, and now, the OWASP API Security
Top 10, among others.

OWASP understands fundamentally that the way
you attack APIs is different than what you do for
the web, which is why OWASP created a separate
list dedicated to API threats. If OWASP believes
that APIs require their own list of top 10 threats
from traditional web applications, then it should
be without contestation that they should be
secured differently as well.

For more information on each threat in the
OWASP API Security Top 10 list and the OWASP
(web) Security Top 10 list, see APPENDIX A.

TARGET APPS

Traceable markets itself as being able to detect
and protect against the API attacks defined in the
OWASP API Top 10 threats, and also against the
traditional web application attacks described in
the OWASP (web) Top 10 threats, as a WAF is able
to do. If that’s true then Traceable is a two-for-one
deal, so of course I needed to test against those

threats as well. But, I could not find a single test
application that had known vulnerabilities for all of
the threats on both lists, so I ended up using two
apps.

My two target vulnerable applications were, crAPI,
a training/demo application with purposely
vulnerable APIs
(https://github.com/OWASP/crAPI), and Juice
Shop, a purposely vulnerable web application
(https://owasp.org/www-project-juice-shop)

Both crAPI and Juice Shop have been developed
with vulnerabilities inherent in their code in order
for white hat hackers/penetration testers to
exercise their skills in hacking web applications
and APIs. While crAPI was designed specifically
around the OWASP API Security Top 10, Juice Shop
was designed with vulnerabilities more specific to
web applications, such as the 10 threats defined
by the OWASP Top 10.

TEST ENVIRONMENT

Throughout this research, a separation of duties
was put into place where I (as the attacker) did not
participate in the setup or implementation of
anything on the back end which a cloud service
provider (CSP) or application owner would be
responsible for. Another individual on the Knight
Ink team, “Blue Team” member Chris Daniels,
configured the infrastructure, installed the
vulnerable applications, and later Traceable. The
ML training was performed by Traceable. While I
did have a login to the Traceable platform, it was
read-only and was enabled in order for me to see
evidence of Traceable’s actions, after my attack
attempts.

To establish a baseline, both vulnerable
applications were first installed and tested without
Traceable. I validated that I could break into the
apps by exploiting each vulnerability type listed in
the OWASP lists, and I recorded how I did it (listed
in the upcoming Tactics & Techniques section).

10 DANCING WITH THE DEVIL

https://github.com/OWASP/crAPI
https://owasp.org/www-project-juice-shop

After I had my baseline, Traceable was deployed.

With crAPI, Traceable was deployed in front of the
application using an NGINX plugin. With Juice Shop
it was deployed in a sidecar configuration, which
injects into the application. Because Traceable
uses ML, it needs a training period to baseline
each application. Traceable told me that this
training happens through normal application use
in a standard enterprise deployment. Since we
didn’t have any real users in our test environment,
they provided traffic generation scripts for us to
run to make sure that their platform was properly
trained for each application.

TOOLS

When hacking APIs, I have my “go-to's” like any
penetration tester. The tools I spend the most of
my time in are Burp Suite and Postman, with each
tool having its own strengths and weaknesses.
While I do use other tools such as, mitmproxy,
Kiterunner, and FuzzAPI for fuzzing, the tool will
always of course depend on the engagement and
the rules of engagement (RoE).

11 DANCING WITH THE DEVIL

12 DANCING WITH THE DEVIL

Tool Description Download

Burp Suite Burp Suite by Portswigger is
offered as both a free community
edition and a professional version.
While the professional version
isn’t going to break the bank for
some, the free community edition
should be feature packed enough
for most users. The power behind
Burp Suite is its numerous
modules in what really amounts
to a “Swiss army knife” for web
application penetration testers.

www.portswigger.net

Postman When all you need is a powerful
API client and none of the other
penetration testing tools like
automated vulnerability scanners
offered in Burp Suite, Postman
should be your go-to. It’s a
feature-rich API client that offers
the ability to create API requests
from scratch, including not just
the body but headers and the
ability to specify OAuth tokens.
Postman’s power really lies in its
collections allowing you to create
and save the different attacks you
might be using in a penetration
test. Postman collections were
instrumental in this project for
being able to export my different
attacks and send them to other
members of this project team.

www.postman.com

TEST RESULTS

13AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

14 DANCING WITH THE DEVIL

TEST RESULTS

crAPI + Traceable

Attack Type Detection Prevention

API1:2019 Broken Object Level Authorization ✓ ✓
API2:2019 Broken User Authentication ✓ ✓
API3:2019 Excessive Data Exposure ✓ ✓
API4:2019 Lack of Resources & Rate Limiting ✓ ✓
API5:2019 Broken Function Level Authorization ✓ ✓
API6:2019 Mass Assignment ✓ ✓
API7:2019 Security Misconfiguration* ✓ ✓
API8:2019 Injection ✓ ✓
API9:2019 Improper Assets Management* ✓ ✓
API10:2019 Insufficient Logging & Monitoring* ✓ ✓

This table summarizes the results of the efficacy of Traceable to detect and prevent the attacks I executed
against both crAPI (representative of the OWASP API Security Top 10) and Juice Shop (representative of the
OWASP Web Security Top 10).

OWASP API SECURITY TOP 10 RESULTS

15 DANCING WITH THE DEVIL

Juice Shop + Traceable

Attack Type Detection Prevention

A01:2021-Broken Access Control ✓ ✓
A02:2021-Cryptographic Failures ✓ ✓
A03:2021-Injection ✓ ✓
A04:2021-Insecure Design* ✓ ✓
A05:2021-Security Misconfiguration ✓ ✓
A06:2021-Vulnerable and Outdated Components ✓ ✓
A07:2021-Identification and Authentication Failures ✓ ✓
A08:2021-Software and Data Integrity Failures* N/A** N/A**

A09:2021-Security Logging and Monitoring Failures* ✓ ✓
A10:2021-Server-Side Request Forgery ✓ ✓

* Means the attack type identified generally is not directly attackable but instead leads to exploitable situations. A
positive on these items means that the tool captured and alerted on symptoms of this attack type so that the
security team could mitigate and prevent related issues.

** N/A=Not applicable in Docker deployment modes

OWASP (WEB) TOP 10 RESULTS

Static Code Analysis
Tactics & Techniques

16AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

SPOILER ALERT: If you are planning to take the crAPI challenge and discover the crAPI vulnerabilities
yourself, then don’t read this section. Here I list out how I exploited each of the attack patterns in each
OWASP list, OWASP API Security Top 10 via crAPI, and OWASP (web) Top 10 via JuiceShop. The step-by-
step for how I exploited the OWASP API Security Top 10 vulnerabilities are listed in APPENDIX B.

crAPI (OWASP API SECURITY TOP 10)

17 DANCING WITH THE DEVIL

Vulnerability Category Specific Vulnerability Tested

API1:2019 Broken Object Level
Authorization

BOLA vulnerabilities exist in the vehicle location function at
{crapi_url}:8888/identity/api/v2/vehicle/<UUID>/location. This is
because crAPI doesn’t implement authorization controls at the object
level, typically in the form of names, numbers, or IDs, which allows
attackers to specify their own object referencing another user’s
resource.

API2:2019 Broken User
Authentication

I discovered the check-otp function in the change password page in a
different version of the API that allowed me to brute-force the OTP field
with no rate limiting. This allowed me to change the password of another
user and log in as them. The exploitation of this vulnerability requires
chaining of multiple vulnerabilities inherent in the forgot password page
and the OTP function as well as navigating to a previous version of the
API where rate limiting isn’t implemented.

API3:2019 Excessive Data Exposure The community forum of crAPI is vulnerable to Excessive Data Exposure
wherein if I create a new post and capture it using Burp Suite, or any
other proxy, the actual API response contains the email address of all the
users who posted to the forum.

A second attack scenario is possible in the function for uploading a
personal video to a user’s profile. When capturing the API response to
the upload, the API includes the shell commands used to perform the
video conversion for the codec. This can be used to chain other attacks
together to then perform command injection on the server by sending a
request back to the API containing a modified command string to the
codec conversion command by adding && <shell command>.

TACTICS & TECHNIQUES

18 DANCING WITH THE DEVIL

Vulnerability Category Specific Vulnerability Tested

API4:2019 Lack of Resources &
Rate Limiting

This vulnerability can be found in the chained attack scenario from
API2:2019 Broken User Authentication above. By navigating to the
previously published version of the API for the check-otp function, it’s
possible to fuzz the one-time passcode where there is no rate limiting
implemented.

API5:2019 Broken Function Level
Authorization

Broken function-level authorization refers to the user hierarchical
permissions system being incomplete or broken as the name implies. By
using the “DELETE” HTTP verb in a request to the administrator endpoint
videos function at {crapi_url}/identity/api/v2/admin/videos/<#> it’s
possible to delete another user’s video in the system from a regular user
account.

API6:2019 Mass Assignment Application frameworks will often automatically map user input in HTTP
requests into internal objects. The function to generate a QR code for
returning items will create a balance for the user once the item is
returned. However, due to a mass assignment vulnerability in the
{crapi_url}//workshop/api/shop/orders/<#> endpoint, it’s possible to
send an API request with a status of RETURNED for that specific order #,
creating a balance in the account without the user having actually
returned the item.

API7:2019 Security
Misconfiguration

Security misconfigurations are not directly attackable but lead to
exploitable situations.These can manifest themselves in different
scenarios, from a misconfiguration in TLS that allows sensitive data to be
sent in clear text without encryption; improper authentication
configuration; or extra HTTP verbs that aren’t necessary.

After my attack campaign and looking at what Traceable detected and
alerted on, I could see it called out vulnerabilities such as
unauthenticated API calls that where handling sensitive data. APIs that
were lacking encryption, and when only basic authentication was being
used instead of more advanced and more secure types.

19 DANCING WITH THE DEVIL

Vulnerability Category Specific Vulnerability Tested

API8:2019 Injection Using the same $ne (not equal) operator for MongoDB with the
coupon_code parameter, I was able to successfully list working coupon
codes that gave me different percentage discounts for my purchase. By
using NoSQL injection against the
{crapi_url}/community/api/v2/coupon/validate-coupon endpoint, I was
able to apply a 75% discount code (TRAC075) giving me 75% off my
purchase.

API9:2019 Improper Assets
Management

Improper assets management is not directly attackable but leads to
exploitable situations. It’s important to be aware of these types of
vulnerabilities being present in a system. It’s a method I’ve used
successfully in many previous API penetration tests. An example of
improper assets management is when an organization leaves a previously
vulnerable API accessible to the Internet which allows an attacker to
target that version instead of having to go head-to-head with the latest
API version with adequate security controls. For example, the attacker
would hit https://api.victim.com/v1/api when
https://api.victim.com/v2/api is the current and more secured version.

After my attack campaign and looking at the Traceable API inventory, I
could see that it was easy to identify shadow APIs that were externally
facing, as well as easily filter for active APIs that, for example, had “v1” in
their endpoint name.

https://api.victim.com/v1/api
https://api.victim.com/v2/api

20 DANCING WITH THE DEVIL

Vulnerability Category Specific Vulnerability Tested

API10:2019 Insufficient Logging &
Monitoring

Insufficient logging and monitoring is not directly attackable but leads to
exploitable situations. Not properly capturing the details of what’s
happening in the system leaves large blind spots. I have seen many real-
life breach scenarios where not enough logging and monitoring was
identified as making incident response and forensics (finding the who,
what, where, when, and why) nearly impossible. For example, the Optus
breach that hit the headlines recently in Australia, as recent as
September, where 2.1 million records were exposed. In post-mortems of
the breach it was discovered that no logging and monitoring was in place
and that this allowed the adversaries to continue to come back over a
long period of time to quietly and slowly dump data from the vulnerable
APIs.

After my attack campaign and looking at what Traceable logged and
monitored about the application and all of it’s API interactions, it was
clear that Traceable was not leaving any blind spots. I mean, I could see
even the payloads of every communication I had with crAPI.

21 DANCING WITH THE DEVIL

Vulnerability Category Specific Vulnerability Tested

A01:2021 - Broken Access Control This vulnerability is exploitable when a request is sent to the API
endpoint {juiceshop_url}/rest/basket/<#> containing the basket ID of
another user. Due to a failure by Juice Shop to authorize the request is
coming from the actual basket owner, it allows me to view the basket
contents of other users. Chaining this vulnerability with an account
takeover, it was possible to then submit the basket contents as an order
costing the victim money for the ordered items.

A02:2021 - Cryptographic Failures The response packet in the reset password link returns all of the user
details for the user including their password, which is using an unsalted
MD4 hash able to be easily cracked with any free tool.

In attempting to brute force the password reset security question,
Traceable detected those brute force attempts and prevented me from
continuing the reset effort.

A03:2021 - Injection SQL injection is possible against the login endpoint at
{juiceshop_url}/rest/user/login that allowed me to log in as an
administrator. By simply specifying admin ‘ or ‘1’=’1’-- in the email
address field with any character as the password, I’m able to bypass
authentication and log in with administrator privileges.

A04:2021 - Insecure Design Insecure Design can encompass a number of different failures, including
relying on hidden directories or files for protecting them from
unauthorized access. It presumes only a legitimate request would come
in for a hidden directory or file, since the person would need to know it
exists beforehand. I leveraged Burp Suite’s crawler in order to attempt to
access a text file of typical directories and files on a web server.
Traceable did detect these attempts as unauthorized attempts to access
multiple directories and files outside of the web root.

A05:2021 - Security
Misconfiguration

This vulnerability is introduced in a depreciated B2B interface that isn’t in
use anymore and was never properly removed. Using a Javascript
beautifier (jsbeautifier) against the main-es2018.js file, I was able to grep
for common web file extension support, such as php, apsx, etc. By doing
this, I discovered the possibility to upload a malicious XML file through
the customer complaint tab. I added a .zip file extension to my XML file
(test.xml.zip), intercepted it with Burp Suite, and changed the filename
back to .zip after it cleared the form submission checks. This vulnerability
was possible because Juice Shop failed to validate all inputs on both the
client and server side.

JUICE SHOP (OWASP WEB TOP 10)

22 DANCING WITH THE DEVIL

Vulnerability Category Specific Vulnerability Tested

A06:2021 - Vulnerable and
Outdated Components

Juice Shop contains a developer backup that I found in the vulnerable
library challenge that contains a library epilogue-js referred to in
package.json. The version of this library contains a typosquating issue.

Juice Shop also contains an outdated white list that redirects me to
cryptocurrency addresses that are no longer promoted. To find this, I
loaded developer tools in my browser > debugger which lists the
javascript files included in the website. I then clicked on the main-
es2015.js file, I searched for a string called redirect, which previously
redirected users to https://blockchain.info. Pasting this URL at the
end of the Juice Shop URL
{juiceshop_url}/redirect?to=https://blockchain.info/address/<cryptoc
urrency_wallet> worked.

A07:2021 - Identification and
Authentication Failures

In the Injection vulnerability, we saw the login page is vulnerable to
SQL Injection. Further authentication failures are in the same login
page which makes it vulnerable to brute-force attacks. After
executing Burp Suite Sniper against the login URL, I was able to
discover that the password for admin is admin123.

A08:2021 - Software and Data
Integrity Failures

Juice Shop does have a vulnerability for testing this. However, when
Juice Shop is running from a Docker container or on a Heroku Dyno,
which is how we had deployed Juice Shop for this research, this
vulnerability was not exploitable for testing.

A09:2021 - Security Logging and
Monitoring Failures

I identified a security misconfiguration that allowed me to view/list
directories containing files (see A05:2021 above). A world readable
directory was available under support/logs that contained log files
being written by Juice Shop. The logging failure here was in Juice Shop
not logging my access to this directory and files.

My access to this directory and browsing through the logs was
detected by Traceable. An administrator can then take the alerts and
report it to administrators in a real life scenario to lock down the
directory and/or block the access within Traceable.

https://blockchain.info/
https://blockchain.info/address/

23 DANCING WITH THE DEVIL

Vulnerability Category Specific Vulnerability Tested

A10:2021 - Server-Side Request
Forgery

When accessing Juice Shop’s profile page using the image upload
function, I was able to provide my own URL instead of the URL used by
Juice Shop to download the image exposing an SSRF Vulnerability in the
“Link Gravatar” button. This SSRF attack was detected and stopped by
Traceable as my risk score as a user had climbed above the threshold as a
result of the previous attack attempts. While my score was unacceptably
high as an attacker, I did confirm that the Traceable interface correctly
identified it as a SSRF attack.

EVASION TECHNIQUES

In this section I detail an example set of the attacks
I ran in an attempt to exploit the vulnerable apps
and evade Traceable.

crAPI (OWASP API Security Top 10)

Evasion Techniques (Overall)
crAPI was, by design, vulnerable to all the OWASP
API Security Top 10 vulnerabilities. Once Traceable
was turned on, I attempted the same attacks
again, which failed. I then tried evasion techniques
like attempting to manipulate some of the fields
that I believed Traceable was using for attack
detection. This included modifying HTTP verbs and
adding spaces into the API requests, which also
resulted in failed attempts. Traceable detected
each attempt and prevented the attack from
succeeding.

NoSQL Injection
NoSQL Injection attacks are manifested in
applications when the developer fails to sanitize
user input, allowing the adversary to “inject”
malicious input that executes a command on the
server that the developer didn’t anticipate. NoSQL
Injection is used against applications using a
NoSQL databases, unlike SQL Injection which is
used against applications that use SQL databases
such as Microsoft SQL, MySQL, PostgreSQL. In the
case of crAPI, the NoSQL database is MongoDB.

Injection attacks can allow an adversary to execute
unwanted code, enabling them to bypass
authentication, exfiltrate sensitive data, modify
data in the database, even compromise the
database and underlying server hosting it.

MongDB supports the operator $ne, which stands
for “not equal to”. Because crAPI is vulnerable to
NoSQL Injection, it was possible to use the $ne
operator in my query to the API endpoint at
{{url}}/community/api/v2/coupon/validate-
coupon, using the body of {"coupon_code":

{"$ne": "TRAC075" },"amount":
"10"}.

Using the $ne operator for MongoDB with the
coupon code parameter, I was able to successfully
list working coupon codes that gave me different
percentage discounts for my purchase. By using
NoSQL injection, I was able to apply a 75%
discount code (TRAC075) giving me 75% off my
purchase.

Traceable was enabled after the attack initially
succeeded. When attempting to send the NoSQL
Injection attack in my API request, Traceable
detected the MongoDB function $ne and blocked
the request. I also attempted to try other HTTP
verbs (referred to as HTTP verb tampering), such
as POST, PUT and DELETE and inserting spaces
(e.g. %2500) into the paths in the body in an
attempt to evade Traceable. Other attempts were
made to get around Traceable’s detection
mechanisms including using URL encoding. An
example would be GET
/%69%6e%64%65%78%2e%68%74%6d%6c as
an alternative to GET /index.html. These efforts
also failed and raised my threat score within the
system making me unable to get through for
further attack attempts.

Broken Object Level Authorization (BOLA)
Broken Object Level Authorization or “BOLA”
attacks are the most common vulnerability I find in
APIs. Developers oft-remember to authenticate
requests but frequently fail to remember to
authorize them, leading to sensitive data
exposure. BOLA enables an adversary to directly
access resources that they shouldn’t be able to
because the developer exposed an object and
failed to define necessary limitations on who’s
authorized to request it.

24 DANCING WITH THE DEVIL

crAPI is a vehicle management and service
application. It offers a function vulnerable to a
BOLA attack that allows users to monitor their
vehicle’s current location. In the scenario I
exploited, I logged into crAPI using my adversary
account. I then navigated to the Community forum
tab which displayed all of the other users’ posts.
While the web page didn’t display the vehicle
UUIDs, I thought perhaps the API did in its
response. I used Burp Suite to capture the
response from the API when I browsed to this
page, which did in fact contain the vehicle UUID of
each user’s post. I then used this UUID in the
Dashboard vehicle locator instead of my own,
which gave me the location of that user’s vehicle.

Because of Traceable’s user context awareness, it
was successful in detecting my attempts at
exploiting this vulnerability. I found out later that
detecting my BOLA attack led to an alert and my
user being blocked. No other evasion efforts to
bypass Traceable were possible in this exercise. In
an attempt to get around this scoring system that
was being applied to my traffic as an offending
user, I attempted to log out of the application,
delete my cookies, and even took a new JWT
token thinking Traceable used JWT tokens to
identify or score specific user activity, which
assumptions failed leading me to believe Traceable
uses multiple variables tied together to identify a
unique user including my IP address and other
identifying factors.

Mass Assignment
Developers will often write their applications to
automatically map user input in HTTP requests
into internal objects, which can have disastrous
affects if used by an adversary to introduce a
parameter in the request that was never intended
by the developer.

crAPI has an eCommerce page that allows users to
order parts for their vehicles. The user is able to
accrue a credit balance when items they’ve
purchased are returned. When attempting to

perform a return of a previously purchased item,
the application will generate a unique QR code
(similar to that of Amazon), allowing the user to
take the item and QR code to their nearby UPS
store to return it back to the store. A Mass
Assignment vulnerability in this return function
allowed me to get a credit for items I didn’t
actually return back to the store.

After capturing the response from the API when
looking at past orders, the server responded with a
list of supported HTTP verbs, one of them being
PUT. The PUT request method creates a new
resource or replaces a representation of the target
resource with the request payload. This meant
that I could modify the fields in the database with
new information. By sending a PUT to
{url}/workshop/api/shop/orders/<#> with a body
containing status:”returned” I could force the API
to update the database with a return status for
items I never returned, thus increasing my
available credit to buy more items I don’t actually
have to pay for.

In an attempt to bypass Traceable, I attempted
other mass assignment attacks that crAPI was
vulnerable to. Another mass assignment
vulnerability exists in the
workshop/api/shop/orders URL. By capturing the
POST request sent by /workshop/api/shop/orders,
the credit is reduced by $10. By forwarding it to
Repeater in Burp Suite, I was able to change the
value of the quantity field in the request body to a
negative value, which increases the balance
beyond the original value. Unfortunately, this did
nothing in the way of evading Traceable’s Mass
Assignment vulnerability detection indicating a
new URL in my attempt made no different to
attempt to get around the high threat score my
activity had summed up to at this point in the
testing.

25 DANCING WITH THE DEVIL

JUICE SHOP (OWASP TOP 10)

By design, Juice Shop is vulnerable to all categories
in the OWASP Top 10 list. As expected, without
Traceable protecting it, I was able to succeed in
exploiting every vulnerability I tested except for
the OWASP vulnerabilities marked N/A. However,
once Juice Shop was instrumented with Traceable,
the tables turned in favor of Juice Shop.

SQL Injection
I started my testing with a SQL Injection
(A03:2021) against the login screen of the
USERNAME field using the “’ OR 1=1—” insertion.
This easily gave me administrative access to Juice
Shop.

Once Juice Shop was instrumented with Traceable,
this same attempt was blocked. I attempted
different mutations of this to try and bypass
Traceable’s detection, such as using “‘ OR TRUE”. I
also attempted ”admin’ or ‘1’=‘1’” as another SQL
Injection mutation attempt. Traceable caught
them all.

Another SQL injection vulnerability exists in Juice
Shop, specifically in the checkout endpoint
allowing an attacker to list all available coupons
accepted by the system then apply multiple
coupons to the order.

Unauthenticated Access
Juice Shop has an unauthenticated access
vulnerability, which is categorized under OWASP
Top 10 A01:2021 – Broken Access Control. There is
a vulnerability in the BasketItems function when a
form POST contains the BasketId parameter twice
and the ID of two separate users’ baskets will add
the item to those users’ baskets.

This unauthenticated access vulnerability is a
failure by the application to enforce policy to
prevent users from acting outside of their assigned
permissions, in this case, adding checkout items to
other users’ baskets. In this testing, I was actually
quite surprised that Traceable was able to detect
my usage of multiple BasketIds in the variable to
detect my attempt to specify other users’ baskets.
In an attempt to bypass Traceable’s attempt to
detect this, I added spaces between the numbers
and quotes as well as attempted URL encoding, all
of which failed.

NOSQL Injection
I then attempted to check Juice Shop for
vulnerability to NOSQL injection on the product
review page. I needed to determine how the
NOSQL query needed to be formatted so I looked
in the Burp Suite proxy history tab to see the
captured packet from my initial query. I then sent
the following query to the repeater within Burp
Suite and modified the ID field to:

{ "id": { "$ne": -1 }, "message":
"NoSQL Injection!" }

I then created a new request to Juice Shop using
the PATCH method to
{{URL}}/rest/products/reviews.

What this request does is select ALL items in
MongoDB in the products review tab that are not
equal to -1 (all) and change the product review
(because of the PATCH verb) to “NoSQL Injection!”

The HTTP PATCH verb is basically a set of
instructions on how to update or modify a
resource.

When Traceable began blocking my attempts to
use the $ne operator here for MongoDB and
detecting it as a NoSQL Injection attack, I
attempted multiple mutations of $ne supported by
MongoDB ($not and $nin), which also failed to
evade Traceable’s detection.

26 DANCING WITH THE DEVIL

POST http://k8s-lab1-ingressk-
54200f1b6e-1969228450.us-west-
2.elb.amazonaws.com/api/BasketItems/

{"ProductId":3,"BasketId":"6","Baske
tId":"7","quantity":1}

With a Body of:

Broken Access Control
This vulnerability allows an unauthorized user
access to resources they shouldn’t have access to.
Attackers are able to circumvent authentication
and authorization controls governing access to
sensitive data. Juice Shop is vulnerable to Broken
Access Control in its view cart function for users.

This vulnerability is exploitable when a request is
sent to the API endpoint
{juiceshop_url}/rest/basket/<#>
containing the basket ID of another user. Due to a
failure by Juice Shop to authorize the request is
coming from the actual basket owner, it allows me
to view the basket contents of other users.
Chaining this vulnerability with an account
takeover, it was possible to then submit the basket
contents as an order costing the victim money for
the ordered items.

Thinking Traceable supported detection of this one
type of Broken Access Control, I then attempted
other forms of exploitation techniques for this
vulnerability that chains other types of attacks
together, including cross site request forgery
(CSRF) that Juice Shop was vulnerable to hoping to
get around Traceable’s detection. These other
vulnerabilities include being able to change the
name of another user, delete all 5-star customer
feedback, and accessing the administration section
of the store. Unfortunately these attempts were
also detected and stopped by Traceable, indicating
that Traceable was able to detect and block
multiple types of Broken Access Control attacks.

27 DANCING WITH THE DEVIL

28AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

Conclusion

CONCLUSION

After hammering against an API security solution
marketed as a distributed tracing approach to API
threat management, I can conclude without
contestation that it was successful in stopping me.
Each and every attack was carefully crafted against
the vulnerable APIs in an attempt at evasion,
insertion, or denial of service. With Traceable
protecting the apps, all the previously successful
attacks failed.

An effective API security strategy needs to:
• ensure observability into network telemetry of

all ingress and egress traffic of your APIs
• ensure a documented and regularly maintained

patch and vulnerability management strategy
• know which APIs are riskier than others

predicated on the type of data they’re serving
and their overall risk factors

• maintain a regularly updated asset
management inventory of the APIs in every
environment

After attempting to evade Traceable, it became
quickly evident to me that their claimed user and
application context awareness is critical in API
security solutions, and that their unique approach
of using distributed tracing is indeed effective in
understanding the context and logic of the
application it’s protecting.

We’ve all trusted OWASP for over a decade on
how we properly secure web applications. If
OWASP believes APIs necessitated its own
separate list of threats with the OWASP API
Security Top 10, then we as defenders should
recognize the need to secure them differently as
well. Simply because APIs speak the HTTP protocol
doesn’t mean we should secure them like a
traditional web server. The types of attacks that
are levied against APIs, such as authentication or
authorization vulnerabilities can’t be detected with
a rules-based solution like a WAF, thus
necessitating a pureplay API security solution.

The empirical evidence presented as an outcome
of this research and live fire exercises against two
vulnerable APIs instrumented with Traceable’s API
security solution speaks volumes. Plainly and
simply, Traceable was very effective at stopping
my repeated exploit attempts against the known
soft targets.

29 DANCING WITH THE DEVIL

Elliott, R. (2017, May 3). Web Application Firewalls and the Future of Website Security.
Section. https://www.section.io/blog/web-application-firewall-definition-website-
security/#:%7E:text=Types%20of%20Firewall%20and%20Web,still%20in%20high%20u
se%20today.

Wikipedia contributors. (2022, April 18). Web application firewall. Wikipedia. Retrieved
May 23, 2022, from https://en.wikipedia.org/wiki/Web_application_firewall

Lane, K. (2021, April 8). Intro to APIs: History of APIs. Postman Blog. Retrieved May 23,
2022, from https://blog.postman.com/intro-to-apis-history-of-
apis/#:%7E:text=Salesforce%20%E2%80%93%20Salesforce%20officially%20launched%
20its,did%20business%20from%20day%20one.

Malik, N. (2021, June 22). The Difference Between REST and SOAP APIs. Dzone.Com.
Retrieved May 23, 2022, from https://dzone.com/articles/difference-between-rest-
and-soap-
api#:%7E:text=REST%20APIs%20uses%20multiple%20standards,in%20the%20large%2
0sized%20file.

January 02, S. (n.d.). SOAP vs REST. What’s the Difference? SmartBear.Com. Retrieved
May 23, 2022, from https://smartbear.com/blog/soap-vs-rest-whats-the-difference/

Livens, J. (2022, November 11). What is distributed tracing and why does it matter?
Dynatrace News. https://www.dynatrace.com/news/blog/what-is-distributed-tracing/

Schreyer, T. (2022, May 31). Securing APIs With Observability & Distributed Tracing |
Traceable App & API Security. Traceable API Security. https://www.traceable.ai/blog-
post/security-observability-why-tracing

OWASP Top Ten | OWASP Foundation. (n.d.). https://owasp.org/www-project-top-ten/

OWASP API Security Top 10.
(n.d.). https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10.htm

PATCH - HTTP | MDN. (2022, September 15). https://developer.mozilla.org/en-
US/docs/Web/HTTP/Methods/PATCH

$ne — MongoDB Manual.
(n.d.). https://www.mongodb.com/docs/manual/reference/operator/query/ne/

crAPI: Mass Assignment. (2022, June 22). levo.ai. https://levo.ai/crapi-mass-
assignment/

BIBLIOGRAPHY

30AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

https://smartbear.com/blog/soap-vs-rest-whats-the-difference/
https://www.dynatrace.com/news/blog/what-is-distributed-tracing/

Hacking OWASP Juice Shop. (n.d.). Curiosity Kills Colby. Retrieved January 20, 2023,
from https://curiositykillscolby.com/

juice-shop/SOLUTIONS.md at master · juice-shop/juice-shop. (n.d.). GitHub.
https://github.com/juice-shop/juice-shop/blob/master/SOLUTIONS.md

EC Council. (2022, October 12). What Is Broken Access Control Vulnerability?
Cybersecurity Exchange. https://www.eccouncil.org/cybersecurity-exchange/web-
application-hacking/broken-access-control-vulnerability/

OWASP. (n.d.). API-Security/2019/en/src at master · OWASP/API-Security. GitHub.
https://github.com/OWASP/API-Security/tree/master/2019/en/src

31AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

BIBLIOGRAPHY

https://curiositykillscolby.com/
https://github.com/juice-shop/juice-shop/blob/master/SOLUTIONS.md
https://www.eccouncil.org/cybersecurity-exchange/web-application-hacking/broken-access-control-vulnerability/
https://github.com/OWASP/API-Security/tree/master/2019/en/src

ABOUT KNIGHT INK

Firm Overview
Knight Ink is a content strategy, creation,
and influencer marketing agency founded
for category leaders and challenger
brands in cybersecurity to fill current
gaps in content and community
management. We help vendors create
and distribute their stories to the market
in the form of written and visual
storytelling drawn from 20+ years of
experience working with global brands in
cybersecurity. Knight Ink balances
pragmatism with thought leadership and
community management that amplifies a
brand’s reach, breeds customer delight
and loyalty, and delivers creative
experiences in written and visual content
in cybersecurity.

Amid a sea of monotony, we help
cybersecurity vendors unfurl, ascertain,
and unfetter truly distinct positioning
that drives accretive growth through
amplified reach and customer loyalty
using written and visual experiences.

Knight Ink delivers written and visual
content through a blue ocean strategy
tailored to specific brands. Whether it’s a
firewall, network threat analytics
solutions, endpoint detection and
response, or any other technology, every
brand must swim out of a red sea of
competition clawing at each other for
market share using commoditized
features. We help our clients navigate to
blue ocean where the lowest price or
most features don’t matter.

We work with our customers to create a
content strategy built around their blue
ocean then perform the tactical steps
necessary to execute on that strategy
through the creation of written and visual
content assets unique to the company
and its story for the individual customer
personas created in the strategy setting.

Contact Us
Web: www.knightgroup.co
Phone: (702) 637-8297
Address: 10845 Griffith Peak Drive, Suite
2, Las Vegas, NV 89135

32 DANCING WITH THE DEVIL

http://www.knightgroup.co/

ABOUT TRACEABLE

Overview
Traceable is the industry’s leading API
security platform that identifies all your
APIs, tests your APIs before production,
continuously evaluates API risk posture,
stops known and unknown API attacks,
and provides deep analytics for threat
hunting and forensic research.

Traceable’s platform applies the power of
distributed tracing and machine learning
models for API security across the entire
development lifecycle. Traceable’s
explorable data lake provides insight into
user and API behaviors to understand
anomalies and block API attacks, enabling
organizations to be more secure and
resilient.

Traceable offers the industry’s most
flexible deployment capabilities to fit into
any environment, scenario, and
organization. Data can be collected
through mirroring, native edge
infrastructure, serverless, language-
based, and other cloud-native
environments.

Learn more at https://traceable.ai

33AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

https://traceable.ai/

34AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

Appendices

OWASP API SECURITY TOP 10
Realizing a need for its own separate project, the
OWASP community came together and launched a
new project dedicated to the threats APIs face
outside of the original OWASP Top 10.

Broken Object Level Authorization (API1:2019).
Often referred to as BOLA and previously referred
to as Insecure Direct Object Reference (IDOR),
BOLA vulnerabilities exist when a developer
exposes an object in the API request allowing the
attacker to substitute their own ID pointing to a
different resource not associated to that
authenticated user. An example of a BOLA attack
would be an attacker replacing an API request for
/api/patients/100 with a new ID of
/api/patients/101.

Broken Authentication (API2:2019). Broken
authentication vulnerabilities allow an adversary
to assume the identity of another legitimate user.
These can include not only weak hashed, plain
text, or default passwords but also no JSON Web
Token (JWT) token validation, or API keys that
have no lifetime expiration. Attacks against Broken
Authentication commonly involve brute force
attacks and credential stuffing.

Excessive Data Exposure (API3:2019). Excessive
Data Exposure vulnerabilities exist when an API is
poorly hardened, providing far more sensitive data
than what the API consumer requires or what the
user needs to see relying on the API client to filter
out only that necessary information. Developers
will sometimes do this for forward compatibility
should the business require more data in the
future.

Lack of Resources and Rate Limiting (API4:2019).
These vulnerabilities are present when an API
doesn’t do proper checking of payload sizes being
sent in the API request or when an excessive
number of API requests can be received and
processed creating a Denial of Service (DoS)
condition.

Broken Function Level Authorization (API5:2019).
BFLA can be easily explained as a vulnerability
allowing a regular user with no elevated privileges
to access sensitive data outside of what they’re
authorized for or perform actions reserved only to
administrative users or users granted a higher
level of privileges.

Mass Assignment (API6:2019). These
vulnerabilities exist when specific parameters and
payloads aren’t whitelisted that a user is
authorized to change in the backend. This
vulnerability enables an adversary to send a POST
to the backend server and write new data to
specific fields if allowed. An example here would
be if an adversary was allowed to change their
email address with their bank but was able to also
specify a new balance for their checking account,
changing it to a much larger number than what’s
there.

35 DANCING WITH THE DEVIL

APPENDIX A

Security Misconfiguration (API7:2019). These
vulnerabilities affect the API server itself, from
application misconfigurations to the API server
itself, even the underlying operating system. These
can include missing patches, a lack of vulnerability
and patch management, missing or outdated TLS
encryption, and more.

Injection (API8:2019). With injection
vulnerabilities, adversaries are able to insert
executable code or SQL, NoSQL, LDAP, operating
system, or other commands into their request.
This occurs because of a failure by the API to
sanitize user input and employ other forms of
prevention against injection causing the
application to inadvertently execute the code that
was inserted into the request giving the adversary
access to backend resources, administrative
access, OS-level access, or more.

Improper Asset Management (API9:2019). I say
this all the time. You can’t protect what you don’t
know you have. These vulnerabilities appear when
non-production (dev) APIs are left reachable, for
example, dev or staging APIs that are not secured.
These can also include shadow APIs that the
organization is unaware of so are missing from
patch and vulnerability management programs
and are reachable by the adversary.

Insufficient Logging and Monitoring (API10:2019).
This appears when the API either fails to or lacks
verbosity in its logging and/or there is a failure by
the organization to effectively monitor or alert on
attacks affecting their APIs. This can include
detection and response initiated by a Security
Information and Event Management (SIEM)
platform or SOAR (Security Orchestration
Automation and Response).

36 DANCING WITH THE DEVIL

OWASP Top 10
The OWASP Top 10 is a community-led project
that maintains the most up-to-date threats to web
applications so it can be used to test and harden
web apps against vulnerabilities. It represents a
broad consensus across its contributors of what
constitutes risks to web applications.

The OWASP Top 10 vulnerabilities were last
updated in 2021 with the following prioritized
vulnerabilities to web apps:

Broken Access Control (A01:2021). Broken access
control allows users to access objects or data
outside their allowed permissions. Think of this
vulnerability as authentication and authorization
vulnerabilities.

Cryptographic Failures (A02:2021). This class of
vulnerability causes the unintended exposure of
sensitive data where encryption of that data fails
allowing unintended recipients to view or modify
it.

Injection (A03:2021). This vulnerability is
introduced when user-supplied input is not
properly sanity-checked, allowing the insertion of
executable code into the query, which is
inadvertently executed by the application. An
example of injection vulnerabilities is escaping the
sql statement in a login form with a ‘ and adding
another SQL statement at the end causing the
backend database to execute it.

Insecure Design (A04:2021). These vulnerabilities
are introduced by missing or ineffective control
design and create a flaw in the pre-code design
stage of ”shift left” in security that enables the
principle of “secure by design. Insecure by design
is a flaw in the initial design of the app before a
single line of code is even written.

Security Misconfiguration (A05:2021). These
vulnerabilities can include multiple types, such as
missing or relaxed permissions or lack of

hardening. These vulnerabilities can also include
unnecessary features, pages, ports, and even
account permissions and can also include default
passwords on accounts, such as guest accounts or
administrator logins. This category of
vulnerabilities can also include an application
server or service that isn’t being regularly patched
or part of a formal vulnerability or patch
management program.

Vulnerable and Outdated Components
(A06.2021). This class of vulnerabilities includes
software, which includes both the application
server, application, APIs, database management
server (DBMS), and even third-party libraries being
relied upon and the operating system (OS) being
out of date, vulnerable, unpatched, or just aren’t
aware of what version they are. This category can
even include the configuration of the components.

Identification and authentication failures
(A07:2021). These vulnerabilities can include a
failure of the application to properly authenticate
a user’s identity or even properly manage session
states. Types of attacks against apps failing to
identify and authenticate users and sessions can
include credential stuffing and manual or
automated brute forcing tools. If the app is missing
or has improperly configured multifactor
authentication; or uses plain-text or weakly
hashed passwords.

Software and Data Integrity Failures (A08:2021)
This class of vulnerability highlights failures in
integrity violations of code and infrastructure, such
as reliance on third-party code, plugins, software
repositories, etc., and even content delivery
networks. These vulnerabilities can also include
failure to validate the integrity of auto-update
servers where applications poll updates from a
central software repository.

37 DANCING WITH THE DEVIL

Security Logging and Monitoring Failures
(A09:2021). When effective monitoring is missing
of a web app, an organization fails to detect and
respond to breach attempts or keep the mean
time to detection/mean time to response
(MTTD/MTTR) low since there are no detective
controls to alert them to a successful breach
event. This category of vulnerabilities can even
include logging that is enabled but stored locally
on the same server leaving it vulnerable to being
deleted by adversaries once a compromise occurs.

Server-side Request Forgery (A10:2021). SSRF
vulnerabilities occur when user-supplied input asks
a web app to call an external URL that isn’t
sanitized by the app to ensure it isn’t a malicious
request.

All of these encompass the latest versions of the
OWASP Top 10 and OWASP API Security Top 10 as
they relate to the most commonly seen
vulnerabilities in the wild and are updated
regularly to reflect changes to that priority.

I can attest to the order in priority of the OWASP
API Security Top 10 as BOLA and Broken
Authentication vulnerabilities are among the most
common vulnerabilities I find and exploit in tests.

38 DANCING WITH THE DEVIL

APPENDIX B

39 DANCING WITH THE DEVIL

API1:2019 Broken Object Level
Authorization

“In testing this vulnerability, I discovered an unauthenticated
access vulnerability in the vehicle locator of crAPI to demonstrate a
BOLA attack in tracking the location of other drivers..”

Within Burp Proxy tab + using Chromium (disable intercept)

Step 1: Authenticate as Victim 1
Step 2: Navigate to Community
Step 3: Note the other vehicle’s UUIDs
Step 4: Navigate back to main dashboard
Step 5: Replay dashboard request and replace vehicle UUID with
another user’s

/identity/api/v2/vehicle/8b9edbde-d74d-4773-8c9f-
adb65c6056fc/location

API2:2019 Broken User
Authentication

Within Burp Proxy tab + using Chromium (disable intercept)

Step 1: Navigate to Forgot Password
Step 2: Input victim’s email address
Step 3: Change password with invalid OTP
Step 4: Within Burp, fuzz the OTP field in the request using 0000-
9999. This will trigger rate limiting.
Step 5: Change URL to /identity/api/auth/v2/check-otp which has
no rate limiting set

API3:2019 Excessive Data
Exposure

Within Burp Proxy tab + using Chromium (disable intercept)

Step 1: Authenticate as Victim 2
Step 2: Navigate to Community page
Step 3: Add Post
Step 4: Note other users’ email addresses in response

GET
/community/api/v2/community/posts/recent

40 DANCING WITH THE DEVIL

API4:2019 Lack of Resources &
Rate Limiting

Within Burp Proxy tab + using Chromium (disable intercept)

Step 1: Navigate to Forgot Password
Step 2: Input victim’s email address
Step 3: Change password with invalid OTP
Step 4: Within Burp, fuzz the OTP field in the request using 0000-
9999. This will trigger rate limiting.
Step 5: Change URL to /identity/api/auth/v2/check-otp which has
no rate limiting set

API5:2019 Broken Function
Level Authorization

Step 1: Send a DELETE method to
{url}//identity/api/v2/admin/videos/{{video_id}} and it will allow a
regular user to delete the videos of other users.

API6:2019 Mass Assignment Within Burp Proxy tab + using Chromium (disable intercept)

Step 1: Login to crAPI with a valid username/password
Step 2: Navigate to SHOPS
Step 3: Notice the credit/balance of $100
Step 4: Navigate to PAST ORDERS
Step 5: Find this API request in the HTTP HISTORY tab in Burp
Suite
Step 6: Notice the response from this request shows the supported
HTTP METHODS (including PUT) and the STATUS parameter for
the past orders of “returned.”
Step 7: Forward the {url}/workshop/api/shop/orders/3 request to
REPEATER in Burp Suite
Step 8: Add a new field to the BODY containing the STATUS
parameter, which we’ll set the value for of “returned”.

The body now looks like this:
{
“product_id”: “1”,
“quantity”: “2”,
“Status”: “returned”

}

Step 7: Reload the SHOP page and notice the credit balance has
now increased by $10 to $110.

41 DANCING WITH THE DEVIL

API8:2019 Injection Within Burp Proxy tab + using Chromium (disable intercept)

Step 1: Log into crAPI with a valid username/password
Step 2: Click on + ADD COUPONS
Step 3: Note that the application prevents the use of random
coupon codes
Step 4: In the HTTP HISTORY tab of Burp Suite, click on the
recent request attempt to use an invalid coupon code and note
the 500 status code response from the API
Step 5: Modify the API request with a new body by inserting the
$ne (MongoDB not equal to function) and set the value to null.
Your new body should look like this:

{“coupon_Code”:{“$ne”: null}}

Step 6: Send the request to the API, noting the response from
the API containing a valid coupon code of TRAC075.

Step 7: Send the same API request but replace null with
TRAC075 and note the API response containing a brand new
coupon code of TRAC065 allowing an attacker to stack multiple
discounts.

”
The API attack surface is the

greatest existential threat
nations and organizations face
today.
“

42AN API HACKER’S SHOWDOWN WITH TRACEABLE’S API SECURITY
SOLUTION

About The Author
Over the last decade, Alissa quickly gained notoriety as an API
hacker after publishing several vulnerability research reports,
hacking 55 banks through their APIs in less than a week;
millions of patient records after she hacked 30 mHealth and
FHIR APIs in less than a week; and demonstrated the ability to
remote control of any law enforcement vehicle through the
automaker’s APIs.

Over the last decade, Alissa has published numerous
vulnerability research reports into hacking different market
segments through their APIs. 2019 was the first report, where
she was targeting financial services and FinTech mobile
applications and APIs. In 2020, following the start of the
COVID-19 pandemic, it was the overnight boom of mobile
health apps (mHealth) and APIs giving patients remote access
to their healthcare providers from home. That same year, she
published evidence on how she was able to take remote
control of law enforcement vehicles through the automaker’s
APIs. Then in 2021, she published her research on how she
hacked millions of patient records through Fast Healthcare
Interoperability Resources (FHIR) APIs of healthcare providers
and payers. This year, in 2022, she has published research on
hacking banks and cryptocurrency exchanges through their
APIs.

Alissa Knight is a 22-year veteran of the cybersecurity industry
as a white hat hacker, published author, filmmaker, and serial
entrepreneur who sold two cybersecurity companies in M&A
transactions to public companies.

-ALISSA KNIGHT

Knight Ink
+1 702 766 6362
10845 Griffith Peak Drive
Suite 2
Las Vegas, NV 89135

