
How to build a
serverless app
platform on
Kubernetes

Learn how to build a Heroku-like
platform using open source Cloud
Native technologies.

By Peter Mbanugo

How to build a serverless
app platform on Kubernetes

By Peter Mbanugo

Chapter 1: Introduction And Set Up

K ubernetes provides a set of primitives to run
resilient, distributed applications. It takes care of
the scaling and automatic failover for your

application. It also provides deployment patterns and APIs
that allow you to automate resource management and
provision new workloads.

One of the main challenges that developers face is how to
focus more on the details of the code rather than the
infrastructure where that code runs. For that, serverless is
one of the leading architectural paradigms to address this
challenge. There are various platforms such as AWS
Lambda, AWS Fargate, and Azure Functions, that allow you
to run serverless applications either deployed as single
functions or running inside containers. These managed
platforms come with certain drawbacks like:

• Vendor lock-in

• Constraint in the size of the application binary/
artefacts

• Cold start performance

You could be in a situation where you're only allowed to
run applications within a private data centre, or you may
be using Kubernetes but you would like to harness the
features of serverless architecture. There are different
open-source platforms and tools, such as Knative and
OpenFaaS, that use Kubernetes to abstract the
infrastructure from the developer, allowing you to deploy
and manage your applications using serverless architecture
and patterns. Using any of those platforms eliminates the
problems mentioned in the previous paragraph.

This book focuses on showing you how to build a
platform to deploy and manage serverless applications on
Kubernetes. It will be a platform that works similar to
Heroku or Google Cloud Run, but with minimal features.

You will learn how to install Knative and deploy
serverless applications on it. Afterwards, you will configure
a continuous integration and deployment pipeline that will;

• take source code from Git,

• auto-detect the application and build a secure, OCI-
compliant image,

• push the image to a container registry,

• and deploy the application on Knative.

In the end, you will have built a web application (using
Next.js) that allows developers to connect to their GitHub
repositories, and deploy code to Knative using an
automated continuous delivery process.

The Serverless Landscape

Serverless computing is a deployment model that allows
you to build and run applications without having to manage
servers. It describes a model where a provider handles the
routine work of provisioning, maintaining, and scaling the
server infrastructure, while the developers can simply
package and upload their code for deployment. Serverless
apps can automatically scale up and down as needed,
without any extra configuration by the developer.

As stated in a white paper by the CNCF serverless
working group, there are two primary serverless personas:

1. Developer: Writes code for and benefits from the
serverless platform that provides them with the point of
view that there are no servers and that their code is
always running.

2. Provider: Deploys the serverless platform for an
external or internal customer.

The provider needs to manage servers (or containers)
and will have some cost for running the platform, even
when idle. A self-hosted system can still be considered
serverless; Typically, one team acts as the provider and
another as the developer.

There are various ways to run serverless apps. As seen
in Figure 1, there are various tools, frameworks, and
platforms to build and run serverless applications. It can be
through managed serverless platforms like IBM Cloud Code
and Google Cloud Run, or open-source alternatives that you
can self-host, such as OpenFaaS and Knative.

https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview

You should see Knative listed in Figure 1, on the lower
right section labelled Installable Platforms. I chose the
Knative project amongst all the others in that section
because they have a nice supportive community on Slack,
continuously improving the docs, and most importantly,
any image deployed on Knative, can be deployed on any
platform that can run OCI (Open Container Initiative)
image. That means that I'm not locked to using only Knative
for my app, and I can deploy it to other platforms without
modifying the code or image. Contrast that to running
containers on AWS Lambda, which requires a proprietary
runtime that only works within their platform.

Another important reason for choosing Knative is
because it is backed by big companies like Google, IBM, and

Figure 1: Cloud Native Computing Foundation (CNCF)
Serverless Landscape

VMware (just to name a few), and it powers products like
Google Cloud Run and IBM Cloud Code Engine.

The Open Container Initiative (OCI) is a Linux
Foundation project, started in June 2015 by

Docker, to design open standards for container
image format and runtime. The OCI currently

contains two specifications: the Runtime
Specification and the Image Specification. To
learn more about it, visit opencontainers.org,

or visit red.ht/3hPJAck to learn more about
some container-related terminology.

Cluster and Tools Set-Up

To follow the instructions in this book, you will need a
Kubernetes cluster. It doesn't matter if it's a local cluster
(e.g minikube or kind), or a remote cluster. The
instructions in this book will focus on using a managed
Kubernetes cluster from DigitalOcean and show alternative
instructions for Docker Desktop when necessary. I implore
you to use the managed Kubernetes service from
DigitalOcean for this book because that's where I run the
examples for this book.

Let's get started!

Install kubectl

The Kubernetes command-line tool, kubectl, allows you
to run commands against Kubernetes clusters. Docker

https://opencontainers.org/
https://red.ht/3hPJAck

Desktop installs kubectl for you, so if you have installed
Docker Desktop, you should have kubectl installed already
and you can skip this section. If you don't have kubectl
installed, follow the instruction below to install it.

If you're on Linux or macOS, you can install kubectl using
Homebrew by running the command brew install kubectl.
If you're on Windows, run the command curl -LO https://
dl.k8s.io/release/v1.21.0/bin/windows/amd64/
kubectl.exe to install kubectl, and then add the binary to
your PATH.

Ensure that the version you installed is up to date by
running the command kubectl version —client.

I have version 1.21.4 when I wrote the examples for this
book.

Create a Cluster with Docker Desktop

Docker Desktop includes a standalone Kubernetes server
and client. This is a single-node cluster that runs within a
Docker container on your local system and should be used
only for local testing. To install Docker Desktop, go to the
URL docs.docker.com/get-docker and download the
appropriate binary for your OS.

To enable Kubernetes support and install a standalone
instance of Kubernetes running as a Docker container, go
to Preferences > Kubernetes and then click Enable
Kubernetes.

https://docs.docker.com/get-docker

Click Apply & Restart to save the settings and then
click Install to confirm, as shown in Figure 2. This
instantiates the images required to run the Kubernetes
server as containers.

The status of Kubernetes shows in the Docker menu and
the context points to docker-desktop, as shown in Figure
3.

Figure 2: Enable Kubernetes on Docker Desktop

Create a Cluster on DigitalOcean

In order to use DigitalOcean Kubernetes Service, you
need a DigitalOcean account. If you don't have an account,
you can create one using my referral link (https://m.do.co/
c/257c8259d8ef), which gives you $100 credit to try out
different things on DigitalOcean.

You will create a cluster using doctl, the official
command-line interface for the DigitalOcean API.

Figure 3: kube context

https://m.do.co/c/257c8259d8ef
https://m.do.co/c/257c8259d8ef
https://m.do.co/c/257c8259d8ef

After you have created a DigitalOcean account, follow the
instructions on docs.digitalocean.com/reference/doctl/
how-to/install to install and configure doctl.

After you have installed and configured doctl, open your
command line application and run the command below in
order to create your cluster on DigitalOcean.

Wait for a few minutes for your cluster to be ready. When
it is done, you should have a single-node cluster with the
name serverless-app-platform, in Frankfurt. The size of the
node is a machine with 2 vCPUs, and 4GB RAM. Also, the
command you just executed will set the current kubectl
context to that of the new cluster.

You can modify the values passed to the doctl kubernetes
cluster create command. The --region flag indicates the
cluster region. Run the command doctl kubernetes options
regions to see possible values that can be used. The
machine size to use when creating nodes is specified using
the --size flag. Run the command doctl kubernetes options
sizes for a list of possible values. The --count flag specifies
the number of nodes to create. For prototyping purposes,
you created a single-node cluster with 2 vCPUs and 4GB
RAM.

Check that you can connect to your cluster by using
kubectl to see the nodes.

doctl kubernetes cluster create serverless-app-platform \

--region fra1 --size s-2vcpu-4gb --count 1

http://docs.digitalocean.com/reference/doctl/how-to/install
http://docs.digitalocean.com/reference/doctl/how-to/install

Run the command kubectl get nodes. You should see one
node in the list, and the STATUS should be in the READY
state.

Now that your cluster is ready, let's move on to the next
chapter where you will learn about Knative and how to use
it to run serverless applications.

Figure 4: kubectl get nodes

	Chapter 1: Introduction And Set Up

